Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Ter Arkh ; 94(8): 963-972, 2022 Oct 12.
Article in Russian | MEDLINE | ID: covidwho-2091505

ABSTRACT

AIM: To identify features of the taxonomic composition of the oropharyngeal microbiota of COVID-19 patients with different disease severity. MATERIALS AND METHODS: The study group included 156 patients hospitalized with confirmed diagnosis of COVID-19 in the clinical medical center of Yevdokimov Moscow State University of Medicine and Dentistry between April and June 2021. There were 77 patients with mild pneumonia according to CT (CT1) and 79 patients with moderate to severe pneumonia (CT2 and CT3). Oropharyngeal swabs were taken when the patient was admitted to the hospital. Total DNA was isolated from the samples, then V3V4 regions of the 16s rRNA gene were amplified, followed by sequencing using Illumina HiSeq 2500 platform. DADA2 algorithm was used to obtain amplicon sequence variants (ASV). RESULTS: When comparing the microbial composition of the oropharynx of the patients with different forms of pneumonia, we have identified ASVs associated with the development of both mild and severe pneumonia outside hospital treatment. Based on the results obtained, ASVs associated with a lower degree of lung damage belong predominantly to the class of Gram-negative Firmicutes (Negativicutes), to various classes of Proteobacteria, as well as to the order Fusobacteria. In turn, ASVs associated with a greater degree of lung damage belong predominantly to Gram-positive classes of Firmicutes Bacilli and Clostridia. While being hospitalized, patients with severe pneumonia demonstrated negative disease dynamics during treatment significantly more often. CONCLUSION: We have observed differences in the taxonomic composition of the oropharyngeal microbiota in patients with different forms of pneumonia developed outside hospital treatment against COVID-19. Such differences might be due to the presumed barrier function of the oropharyngeal microbiota, which reduces the risk of virus titer increase.


Subject(s)
COVID-19 , Microbiota , Humans , RNA, Ribosomal, 16S/genetics , Oropharynx/microbiology , Lung
2.
NPJ Biofilms Microbiomes ; 8(1): 67, 2022 08 24.
Article in English | MEDLINE | ID: covidwho-2000891

ABSTRACT

The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) pandemic has posed multiple challenges to global public health. Clinical features and sequela of SARS-CoV-2 infection include long-term and short-term complications often clinically indistinguishable from bacterial sepsis and acute lung infection. Post-hoc studies of previous SARS outbreaks postulate secondary bacterial infections with microbial dysbiosis. Oral microbial dysbiosis, particularly the altered proportion of Firmicutes and Proteobacteria, observed in other respiratory virus infection, like influenza, has shown to be associated with increased morbidity and mortality. Oropharynx and lung share similar kinds of bacterial species. We hypothesized that alteration in the Human Oropharyngeal Microbiome in SARS-CoV-2 patients can be a clinical indicator of bacterial infection related complications. We made a longitudinal comparison of oropharyngeal microbiome of 20 SARS-CoV-2 patients over a period of 30 days; at three time points, with a 15 days interval; contrasting them with a matched group of 10 healthy controls. Present observation indicates that posterior segment of the oropharyngeal microbiome is a key reservoir for bacteria causing pneumonia and chronic lung infection on SARS-CoV-2 infection. Oropharyngeal microbiome is indeed altered and its α-diversity decreases, indicating reduced stability, in all SARS-CoV-2 positive individuals right at Day-1; i.e. within ~24 h of post clinical diagnosis. The dysbiosis persists long-term (30 days) irrespective of viral clearance and/or administration of antibiotics. There is a severe depletion of commensal bacteria phyla like Firmicutes among the patients and that depletion is compensated by higher proportion of bacteria associated with sepsis and severe lung infection from phyla Proteobacteria. We also found elevated proportions of certain genus that have previously been shown to be causal for lung pneumonia in studies of model organisms and human autopsies' including Stenotrophomonas, Acenetobactor, Enterobactor, Klebsiella and Chryseobacterium that were to be elevated among the cases. We also show that responses to the antibiotics (Azithromycin and Doxycycline) are not uniform for all individuals.


Subject(s)
COVID-19 , Coinfection , Microbiota , Pneumonia, Bacterial , Sepsis , Anti-Bacterial Agents , Bacteria/genetics , Dysbiosis/microbiology , Humans , Oropharynx/microbiology , SARS-CoV-2
3.
Front Cell Infect Microbiol ; 12: 824578, 2022.
Article in English | MEDLINE | ID: covidwho-1775646

ABSTRACT

Coronavirus disease 2019 (COVID-19) remains a serious emerging global health problem, and little is known about the role of oropharynx commensal microbes in infection susceptibility and severity. Here, we present the oropharyngeal microbiota characteristics identified by full-length 16S rRNA gene sequencing through the NANOPORE platform of oropharynx swab specimens from 10 mild COVID-19 patients and 10 healthy controls. Our results revealed a distinct oropharyngeal microbiota composition in mild COVID-19 patients, characterized by enrichment of opportunistic pathogens such as Peptostreptococcus anaerobius and Pseudomonas stutzeri and depletion of Sphingomonas yabuuchiae, Agrobacterium sullae, and Pseudomonas veronii. Based on the relative abundance of the oropharyngeal microbiota at the species level, we built a microbial classifier to distinguish COVID-19 patients from healthy controls, in which P. veronii, Pseudomonas fragi, and S. yabuuchiae were identified as the most prominent signatures for their depletion in the COVID-19 group. Several members of the genus Campylobacter, especially Campylobacter fetus and Campylobacter rectus, which were highly enriched in COVID-19 patients with higher severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral load and showed a significant correlation with disease status and several routine clinical blood indicators, indicate that several bacteria may transform into opportunistic pathogen in COVID-19 patients when facing the challenges of viral infection. We also found the diver taxa Streptococcus anginosus and Streptococcus alactolyticus in the network of disease patients, suggesting that these oropharynx microbiota alterations may impact COVID-19 severity by influencing the microbial association patterns. In conclusion, the low sample size of SARS-CoV-2 infection patients (n = 10) here makes these results tentative; however, we have provided the overall characterization that oropharyngeal microbiota alterations and microbial correlation patterns were associated with COVID-19 severity in Anhui Province.


Subject(s)
COVID-19 , Microbiota , Humans , Oropharynx/microbiology , RNA, Ribosomal, 16S/genetics , SARS-CoV-2
4.
Adv Sci (Weinh) ; 8(20): e2102785, 2021 10.
Article in English | MEDLINE | ID: covidwho-1366208

ABSTRACT

Respiratory tract microbiome is closely related to respiratory tract infections, while characterization of oropharyngeal microbiome in recovered coronavirus disease 2019 (COVID-19) patients is not studied. Herein, oropharyngeal swabs are collected from confirmed cases (CCs) with COVID-19 (73 subjects), suspected cases (SCs) (36), confirmed cases who recovered (21), suspected cases who recovered (36), and healthy controls (Hs) (140) and then completed MiSeq sequencing. Oropharyngeal microbial α-diversity is markedly reduced in CCs versus Hs. Opportunistic pathogens are increased, while butyrate-producing genera are decreased in CCs versus Hs. The classifier based on eight optimal microbial markers is constructed through a random forest model and reached great diagnostic efficacy in both discovery and validation cohorts. Notably, the classifier successfully diagnosed SCs with positive IgG antibody as CCs and is demonstrated from the perspective of the microbiome. Importantly, several genera with significant differences gradually increase and decrease along with recovery from COVID-19. Forty-four oropharyngeal operational taxonomy units (OTUs) are closely correlated with 11 clinical indicators of SARS-CoV-2 infection and Hs based on Spearman correlation analysis. Together, this research is the first to characterize oropharyngeal microbiota in recovered COVID-19 cases and suspected cases, to successfully construct and validate the diagnostic model for COVID-19 and to depict the correlations between microbial OTUs and clinical indicators.


Subject(s)
COVID-19/microbiology , Microbiota , Oropharynx/microbiology , SARS-CoV-2 , Adult , Female , Humans , Male , Middle Aged
5.
mBio ; 12(4): e0177721, 2021 08 31.
Article in English | MEDLINE | ID: covidwho-1360545

ABSTRACT

Viral infection of the respiratory tract can be associated with propagating effects on the airway microbiome, and microbiome dysbiosis may influence viral disease. Here, we investigated the respiratory tract microbiome in coronavirus disease 2019 (COVID-19) and its relationship to disease severity, systemic immunologic features, and outcomes. We examined 507 oropharyngeal, nasopharyngeal, and endotracheal samples from 83 hospitalized COVID-19 patients as well as non-COVID patients and healthy controls. Bacterial communities were interrogated using 16S rRNA gene sequencing, and the commensal DNA viruses Anelloviridae and Redondoviridae were quantified by qPCR. We found that COVID-19 patients had upper respiratory microbiome dysbiosis and greater change over time than critically ill patients without COVID-19. Oropharyngeal microbiome diversity at the first time point correlated inversely with disease severity during hospitalization. Microbiome composition was also associated with systemic immune parameters in blood, as measured by lymphocyte/neutrophil ratios and immune profiling of peripheral blood mononuclear cells. Intubated patients showed patient-specific lung microbiome communities that were frequently highly dynamic, with prominence of Staphylococcus. Anelloviridae and Redondoviridae showed more frequent colonization and higher titers in severe disease. Machine learning analysis demonstrated that integrated features of the microbiome at early sampling points had high power to discriminate ultimate level of COVID-19 severity. Thus, the respiratory tract microbiome and commensal viruses are disturbed in COVID-19 and correlate with systemic immune parameters, and early microbiome features discriminate disease severity. Future studies should address clinical consequences of airway dysbiosis in COVID-19, its possible use as biomarkers, and the role of bacterial and viral taxa identified here in COVID-19 pathogenesis. IMPORTANCE COVID-19, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection of the respiratory tract, results in highly variable outcomes ranging from minimal illness to death, but the reasons for this are not well understood. We investigated the respiratory tract bacterial microbiome and small commensal DNA viruses in hospitalized COVID-19 patients and found that each was markedly abnormal compared to that in healthy people and differed from that in critically ill patients without COVID-19. Early airway samples tracked with the level of COVID-19 illness reached during hospitalization, and the airway microbiome also correlated with immune parameters in blood. These findings raise questions about the mechanisms linking SARS-CoV-2 infection and other microbial inhabitants of the airway, including whether the microbiome might regulate severity of COVID-19 disease and/or whether early microbiome features might serve as biomarkers to discriminate disease severity.


Subject(s)
Bacteria/classification , Dysbiosis/microbiology , Lung/microbiology , Nasopharynx/microbiology , Oropharynx/microbiology , SARS-CoV-2/immunology , Adult , Aged , Aged, 80 and over , Anelloviridae/classification , Anelloviridae/genetics , Anelloviridae/isolation & purification , Bacteria/genetics , Bacteria/isolation & purification , COVID-19/pathology , Female , Humans , Lymphocyte Count , Male , Microbiota , Middle Aged , RNA, Ribosomal, 16S/genetics , Severity of Illness Index
6.
Signal Transduct Target Ther ; 6(1): 191, 2021 05 13.
Article in English | MEDLINE | ID: covidwho-1228248

ABSTRACT

COVID-19 remains a serious emerging global health problem, and little is known about the role of oropharynx commensal microbes in infection susceptibility and severity. Here, we present the oropharyngeal microbiota characteristics identified by shotgun metagenomic sequencing analyses of oropharynx swab specimens from 31 COVID-19 patients, 29 influenza B patients, and 28 healthy controls. Our results revealed a distinct oropharyngeal microbiota composition in the COVID-19 patients, characterized by enrichment of opportunistic pathogens such as Veillonella and Megasphaera and depletion of Pseudopropionibacterium, Rothia, and Streptococcus. Based on the relative abundance of the oropharyngeal microbiome, we built a microbial classifier to distinguish COVID-19 patients from flu patients and healthy controls with an AUC of 0.889, in which Veillonella was identified as the most prominent biomarker for COVID-19 group. Several members of the genus Veillonella, especially Veillonella parvula which was highly enriched in the oropharynx of our COVID-19 patients, were also overrepresented in the BALF of COVID-19 patients, indicating that the oral cavity acts as a natural reservoir for pathogens to induce co-infections in the lungs of COVID-19 patients. We also found the increased ratios of Klebsiella sp., Acinetobacter sp., and Serratia sp. were correlated with both disease severity and elevated systemic inflammation markers (neutrophil-lymphocyte ratio, NLR), suggesting that these oropharynx microbiota alterations may impact COVID-19 severity by influencing the inflammatory response. Moreover, the oropharyngeal microbiome of COVID-19 patients exhibited a significant enrichment in amino acid metabolism and xenobiotic biodegradation and metabolism. In addition, all 26 drug classes of antimicrobial resistance genes were detected in the COVID-19 group, and were significantly enriched in critical cases. In conclusion, we found that oropharyngeal microbiota alterations and functional differences were associated with COVID-19 severity.


Subject(s)
Bacteria , COVID-19/microbiology , Metagenomics , Microbiota , Oropharynx/microbiology , SARS-CoV-2 , Adult , Bacteria/classification , Bacteria/genetics , Bacteria/growth & development , Female , Humans , Male , Middle Aged
7.
Pediatr Pulmonol ; 56(7): 2043-2047, 2021 07.
Article in English | MEDLINE | ID: covidwho-1179016

ABSTRACT

BACKGROUND: Collection of respiratory cultures for airway microbiology surveillance is an essential component of routine clinical care in cystic fibrosis (CF). The COVID-19 global pandemic has necessitated increased use of telehealth, but one limitation of telehealth is the inability to collect respiratory specimens. We initiated a protocol for at-home collection of oropharyngeal (OP) swabs from children with CF. METHODS: Home respiratory specimen collection was offered during telehealth encounters. Home OP swab kits were sent to participating families via mail with instructions for collection and return. Specimens were returned by overnight shipping or dropped off at a hospital lab for processing and culture. We evaluated demographic data and compared culture results from the home-collected specimen to the most recent specimen collected in clinic. We also tracked the frequency of newly identified Pseudomonas aeruginosa. RESULTS: Home OP swab kits were sent to families of 33 children with CF (range 1.5-19 years). OP swab kits were successfully returned from 19 children (range 1.5-19 years). One or more CF pathogens grew from 79% of the specimens. For four individuals, the home collected specimen demonstrated the new growth of P. aeruginosa. CONCLUSIONS: Home collection of OP swabs for bacterial culture is feasible in children with CF across a range of ages. Most home-collected specimens demonstrated growth of one or more CF pathogens and results were similar to recent in-clinic specimens, suggesting acceptable sample collection technique. Anti-pseudomonal therapy was initiated for four children based on the growth of P. aeruginosa from the home respiratory specimen.


Subject(s)
Cystic Fibrosis/microbiology , Oropharynx/microbiology , Pseudomonas aeruginosa/isolation & purification , Specimen Handling/methods , Adolescent , COVID-19 , Child , Child, Preschool , Female , Humans , Infant , Male , SARS-CoV-2
8.
Int J Environ Res Public Health ; 18(4)2021 02 23.
Article in English | MEDLINE | ID: covidwho-1100115

ABSTRACT

Since December 2019, SARS-CoV-2 infection has been still rapidly spreading, resulting in a pandemic, followed by an increasing number of cases in countries throughout the world. The severity of the disease depends on the patient's overall medical condition but no appropriate markers are available to establish the prognosis of the patients. We performed a 16S rRNA gene sequencing, revealing an altered composition of the nasal/oropharyngeal (NOP) microbiota in 21 patients affected by COVID-19, paucisymptomatic or in an Intensive Care Unit (ICU), as compared to 10 controls negative for COVID-19 or eight affected by a different Human Coronavirus (HKU, NL63 and OC43). A significant decrease in Chao1 index was observed when patients affected by COVID-19 (in ICU) were compared to paucisymptomatic. Furthermore, patients who were in ICU, paucisymptomatic or affected by other Coronaviruses all displayed a decrease in the Chao1 index when compared to controls, while Shannon index significantly decreased only in patients under ICU as compared to controls and paucisymptomatic patients. At the phylum level, Deinococcus-Thermus was present only in controls as compared to SARS-CoV-2 patients admitted to ICU, paucisymptomatic or affected by other coronaviruses. Candidatus Saccharibacteria (formerly known as TM7) was strongly increased in negative controls and SARS-CoV-2 paucisymptomatic patients as compared to SARS-CoV-2 ICU patients. Other modifications were observed at a lower taxonomy level. Complete depletion of Bifidobacterium and Clostridium was exclusively observed in ICU SARS-CoV-2 patients, which was the only group characterized by the presence of Salmonella, Scardovia, Serratia and Pectobacteriaceae. In conclusion, our preliminary results showed that nasal/oropharyngeal microbiota profiles of patients affected with SARS-CoV-2 may provide valuable information in order to facilitate the stratification of patients and may open the way to new interventional strategies in order to ameliorate the outcome of the patients.


Subject(s)
COVID-19 , Microbiota , Nose/microbiology , Oropharynx/microbiology , Adult , Aged , Bacteria/classification , Female , Humans , Male , Middle Aged , RNA, Ribosomal, 16S/genetics , Young Adult
9.
J Clin Microbiol ; 58(9)2020 08 24.
Article in English | MEDLINE | ID: covidwho-835425

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has led many clinics to move from clinician-collected to self-collected oropharyngeal swabs for the detection of sexually transmitted infections (STIs). Before this change, however, self-collection was used primarily for genital and anorectal infections, with only limited studies on the performance of self-collection of oropharyngeal swabs for oropharyngeal STI detection. The Melbourne Sexual Health Centre (MSHC) changed from clinician-collected to self-collected oropharyngeal swabs for oropharyngeal gonorrhea and chlamydia screening on 16 March 2020 in order to reduce health care worker risk during the COVID-19 pandemic. We compared the proportions of valid and positive samples for gonorrhea and chlamydia among men who have sex with men (MSM) in two time periods; the clinician collection period, between 20 January and 15 March 2020, and the self-collection period, between 16 March and 8 May 2020. A total of 4,097 oropharyngeal swabs were included. The proportion of oropharyngeal swabs with equivocal or invalid results for Neisseria gonorrhoeae was higher in the self-collection period (1.6% [24/1,497]) than in the clinician collection period (0.9% [23/2,600]) (P = 0.038), but the proportions did not differ for the detection of Chlamydia trachomatis The positivity rates of oropharyngeal N. gonorrhoeae (adjusted prevalence ratio [PR], 1.07 [95% confidence interval {CI}, 0.85 to 1.34]) (P = 0.583) and oropharyngeal C. trachomatis (adjusted PR, 0.84 [95% CI, 0.51 to 1.39]) (P = 0.504) specimens did not differ between the two periods. Self-collected oropharyngeal swabs for the detection of N. gonorrhoeae and C. trachomatis have acceptable performance characteristics and, importantly, reduce health care worker exposure to respiratory infections.


Subject(s)
Chlamydia Infections/diagnosis , Gonorrhea/diagnosis , Homosexuality, Male/statistics & numerical data , Pharyngeal Diseases/diagnosis , Specimen Handling , Adult , Betacoronavirus , COVID-19 , Coronavirus Infections , Humans , Male , Mass Screening/methods , Mass Screening/statistics & numerical data , Oropharynx/microbiology , Pandemics , Pneumonia, Viral , Retrospective Studies , SARS-CoV-2 , Self Care , Specimen Handling/methods , Specimen Handling/statistics & numerical data , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL